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1.0  SUMMARY 

This project considered building risk-informed decision-making with regard to vibration tests 
used for any sort of qualification procedure, maintenance action, or state assessment.  Using a 
single-input/multi-output state model with output noise on each channel, three separate statistical 
models were derived for the estimation of the transmissibility function, both with extraneous 
noise (such as from the environment, measurement system, etc.) and without extraneous noise 
(only considering the error in the estimation procedure itself).  The three models were based on 
different applications of transmissibility estimators, including a perturbation approach, a 
Gaussian bivariate approach, and a Chi-square bivariate approach.  

This project commenced in January 2009 with a simple finite element model simulation that 
showed the capability of transmissibility estimation from rapid vibration testing in the 
application of damage detection and structural health monitoring (specifically for detecting 
fastener preload loss and stiffness changes). Two features were proposed, namely root mean 
square error and dot product difference. Because of the nature of transmissibility, it is more 
sensitive for local changes and therefore transmissibility-based features are better at capturing 
small damages. 

The three statistical models mentioned above were then derived and compared.  The model via 
perturbation approach simply supplies the variance and bias error for one of the transmissibility 
estimators, which requires the least information about input and output. Gaussian bivariate 
approach gives a more accurate quantification through cross power density estimations, except in 
very small frequency range, where the magnitude is really low and does not deliver lots of useful 
information. Chi-square bivariate approach delivers the most accurate statistical model and does 
not require any information from the input, but when extraneous noise level is high, the estimator 
itself is submerged under noise floor, and does not contain useful transmissibility information.  
Furthermore, although this approach had overall the best features, it only works for 
transmissibility magnitude estimations.  All comparisons were validated on a three-degree-of-
freedom system model. 

Based upon the statistical models established, a receiver operating characteristic (ROC) analysis 
was applied to evaluate performance, and the conclusion was reached that at frequency lines with 
good input-output gain, the detection is globally stable even when there is noise contamination.  

Phase estimation statistical modeling work commenced for both frequency response function and 
transmissibility. Similar validation has been done with data from a cantilevered plate structure. 
Test results show clearly the sensitivity of transmissibility phase in capturing structural 
parameter changes, although this study was still ongoing at the time of funding loss. 
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2.0  INTRODUCTION 

The initial thrust was determined to be investigation of possible rapid testing/check-out 
procedures that could be implemented for satellite verification readiness (responsive to 
significantly reduced time required for qualification).  Funding sources later changed to Army 
Research Laboratory (ARL), which had a shift in focus to risk-informed detection of damage for 
maintenance and operations purposes in rotorcraft. Common to both applications is some form of 
state assessment or system identification [1], often in the frequency domain [2].  For 
mechanical/structural system identification processes, approaches in the frequency domain 
require vibration-based testing (e.g., experimental modal analysis via the FRF) to obtain the 
relationship between structural parameters (mass, stiffness, and damping), the characteristic 
eigenstate (resonant frequencies, mode shapes, and sometimes damping), and measured vibration 
response [3]. Any frequency domain approach that relies on FRF estimation, however, requires 
either direct measurement of or an assumption of the input excitations to the system. It is well-
known that for some applications such measurements are impossible or difficult to obtain, and/or 
such assumptions would be poor or inappropriate; for these situations, estimation of a 
transmissibility function is possible. Similar to a traditional input-output transfer function such as 
the FRF, the transmissibility function is defined as the frequency-domain ratio between two 
outputs, and it describes the relative admittance between the two measurements. Devriendt et al. 
interpret the transmissibility concept versus transfer function as response data normalized by a 
reference response instead of by the input excitation [4]. The transmissibility also contains less 
general but more specific (local) information compared to the FRF, because the characteristic 
polynomial, which contains all the system poles (resonances), will be cancelled in calculating 
transmissibilities, and only the system zeros (anti-resonances) will remain. Therefore, 
transmissibility-derived features are entirely independent of system poles but solely dependent 
on zeros. Unlike the system resonances, which are influenced by structural parameters globally, 
system anti-resonances are more affected by local properties and are more sensitive to detailed 
structural modeling and change detection (such as for damage identification). As a result, 
transmissibility appears to be a useful characteristic in identification with more sensitivity to 
local structural details and effects [5, 6].   

A generalization of the transmissibility concept was introduced by Ribeiro et al. [7]. For a multi-
DOF structure, the transmissibility can be derived from the FRF matrix, where the FRF matrix is 
obtained from either testing or analytical/numerical modeling. This relates the set of measureable 
coordinates and the set of interest coordinates together and makes the identification process more 
convenient. Mottershead [8] suggested a useful alternative for modal analysis and demonstrated 
that the sensitivity of the zeros estimated from response measurements and FRF estimations may 
be expressed as linear combinations of the sensitivities of natural frequencies and mode shapes, 
where the closer modes contribute more to the sum.  He et al. [9] studied the sensitivity about 
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local mass and stiffness with respect to the anti-resonance locations when applying relocation of 
zeros for vibration reduction purposes. 

One application area receiving lots of attention is using transmissibility estimation for better 
quality modal parameter evaluation. Considering the operational modal analysis context with 
output-only measurements available, Devriendt et al. [6] successfully generalized the modal 
identification process where the excitation can be any type of input, not constrained to be a white 
noise sequence; by combining transmissibility data under different loading conditions, they show 
a good consistency between the modal parameters estimated from transmissibility measurements 
and the actual system poles. They report that by considering two different transmissibility 
estimations corresponding to the same positions but with different input excitation, the 
estimations cross each other at the system resonances, which means different estimations are 
exactly the same value at system poles. This value is directly related to scalar mode shapes and is 
used for modal parameter extraction in a multiple-input/multiple-output (MIMO) procedure and 
for accurate system poles localization [4, 10].   

Transmissibility-based system identification, for many of the reasons described above, is also 
getting increased attention in the area of damage detection and structural health monitoring [11-
13]. Johnson et al. apply transmissibility-based diagnostic technology to reduce the dimension of 
response measurements and demonstrate analytically and experimentally the sensitivity of 
transmissibility to both linear and nonlinear system changes [5, 11], as well as significantly 
enhanced localization capability since the system zeros are only sensitive to the parameters in 
certain localized region, and anti-resonance frequencies show significant variations with 
different measurement positions [5, 14]. Worden et al. [13, 15] implement system damage/fault 
detection via neural network training and outlier analysis, demonstrating that the system 
transmissibility provides a sensitive feature for the detection of small stiffness variation. 
Therefore, with the transmissibility-based technique, it is straightforward to identify the 
appearance and location of the system parameter changes. System identification results have 
shown that the localization is effective on both discrete [5] and continuous [14] system 
applications. Worden et al. [16-18] go through the entire process of experimental validation of a 
structural health monitoring methodology, based upon the measured transmissibilities and 
novelty detection. The investigation expands from simple laboratory structures to complex and 
realistic structures such as aircraft wing, and both the results from detection and localization are 
validated. 

For all practical applications, of course, inherent to any such assessment is the quantification of 
uncertainty, as it is well known the sensitivity of any feature derived from transmissibility (or 
any other system identification quantity such as the FRF) is compromised by noise, generally 
categorized into four classes: operational, environmental, measurement, and computational [19]; 
these compromised estimates may lead to significant false-positive (Type-I) errors in the 
interpretation of system identification results, regardless of specific application. In this paper, the 
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primary objective is, under an assumed single-input/multiple-output (SIMO) vibration test and 
estimator, to propose a statistical model for uncertainty bounds and to derive the actual 
distribution of estimates of the transmissibility function. Most of the previous works involved 
with uncertainty quantification in system identification procedures are focused on the modeling 
of the FRF and input-output transfer function uncertainty. With a Gaussian input and optimized 
channel assumption, Bendat and Piersol’s classic works derived the standard deviation of 
different estimations with respect to the coherence function, through which the uncertainty 
bounds for different confidence levels could be expressed approximately in a Gaussian way [20-
22]. In Ref. [23], an extended model with uncorrelated noise is introduced, which is applicable to 
evaluate the uncertainty of complex FRFs. Under appropriate hypotheses, Goodman [24, 25] 
formulated the confidence bands for all elements in the FRF matrix approximately using an F-
distribution, and the confidence bands are also given as functions of coherence. 

However, the transmissibility function, which is the ratio of two correlated output power spectra, 
is not generally accurately modeled with Gaussian or F-distribution characteristics. This project 
considers a particular transmissibility estimator and derives an exact probability density function 
for uncertainties associated with its computation, including the influence of corrupting external 
noise sources.  In fact, three different models for different transmissibility estimators are derived, 
and they are compared and evaluated for performance.  The best selection is further validated 
experimentally, and global performance stability is assessed via a receiver operating 
characteristic (ROC). 

3.0  TESTING OF TRANSMISSIBILITY FEATURE SOURCE 

Motivated by the advantages of transmissibility as a sensitive quantity representing structure 
status, a simplified satellite model was first considered. A cubic shell (plate)-frame assembly was 
designed in ABAQUS, with the mesh plotted in Figure (1-left.) Preliminary analysis was 
deployed based upon modal analysis, in order to observe possible changes in dynamic behavior 
between completely fastened and unfastened states. 

 
Figure 1: Finite element model (left), and first mode of the structure (right). 



Distribution Statement A: Approved for public release; distribution is unlimited.  5 

When a local region is unfastened, the initial hypothesis is that modal properties would change. 
Figure 2 shows such a (subtle) change for a particular mode shape, where there is a subtle loss in 
the shape symmetry, as well as local strain concentrations.   

 
Figure 2: Fastened area in pink and local unfastened area (left), and damaged mode shape (right). 

Motivated by the observed (localized) changes to the modal spatial structure as preload loss 
occurs, the transmissibility transfer function was chosen magnitude as a departure point for 
analysis.  The transmissibility is described thus as the magnitude of the frequency domain 
transfer function ( )ijT ω  between any two acceleration measurement points ia and ja , or 

( )( )
( )

i
ij

j

FFT aT
FFT a

ω = .      (1) 

Transmissibility essentially detects relative magnitude (and phase for certain estimators) changes 
that are occurring among any combination of measurement points. In order to quantify the 
change of transmissibility magnitude, more compactly, two evaluation metrics were considered. 
One is the root-mean-square error 

 

Eij (RMSE), defined as: 

 

Eij =
1

n −1
ΔTij(ωn )− Δ Tij( )2

n
∑ ,    ΔTij = Tij,fastened − Tij,unfastened. (2) 

And a second metric considers the projection of the fastened and unfastened transmissibilities via 
the dot product, normalized subsequently by the length of the feature vectors: 

 

cosθij =
Tij,fastened (ω) • Tij,unfastened (ω)
Tij,fastened (ω) Tij,unfastened (ω)

.     (3) 

For simplification, the final second metric was defined as
 

 

1− cosθij .  Compared to the RMSE 

metric, this metric has the advantage of scaling between 0 and 1. 
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Figure 3: Metric evaluations for 1% spring stiffness loss. 

Figure 3 is the two metric evaluations for 1% of spring stiffness loss (damage), with excitation at 
center/off center positions, about which preliminary conclusions were made in previous interim 
reports.  

The two metrics are capable to detect structural parameter changes that indicate damage 
occurrence; however, when the system is subject to noise contamination or the transmissibility is 
estimated via shaker test with non-deterministic excitation, the transmissibility may undergo a 
non-damage-induced change. Under this circumstance, statistical uncertainty quantification is 
required in order to filter out the false alarms and produce a confidence level for decision-
making. 

 

4.0 STATISTICAL UNCERTAINTY MODELING APPROACHES 

A single-input-multiple-output (SIMO) flow describes how transmissibility is derived and 
contaminated by extraneous noise, as shown in Figure 4, where the output in the context of this 
project is, but not limited to, acceleration. 

points label

po
in

ts
 la

be
l

RMS error between damaged/undamaged cases,
excited at center, damaged stiffness: 99%*1E12

 

 

5 10 15

2

4

6

8

10

12

14

16

0

1

2

3

4

5

6

7
x 10-4

points label

po
in

ts
 la

be
l

RMS error between damaged/undamaged cases,
excited at offcenter, damaged stiffness: 99%*1E12

 

 

5 10 15

2

4

6

8

10

12

14

16

1

2

3

4

5

6

7

8

9
x 10-3

points label

po
in

ts
 la

be
l

dot product difference between damaged/undamaged cases,
excited at center, damaged stiffness: 99%*1E12

 

 

5 10 15

2

4

6

8

10

12

14

16

0

0.5

1

1.5

2

2.5

3

3.5
x 10-4

points label

po
in

ts
 la

be
l

dot product difference between damaged/undamaged cases,
excited at offcenter, damaged stiffness: 99%*1E12

 

 

5 10 15

2

4

6

8

10

12

14

16

0

1

2

3

4

5

6

7

8
x 10-6

#10 & #16

#10 & #17
Entire rows



Distribution Statement A: Approved for public release; distribution is unlimited.  7 

 
Figure 4: General SIMO data flow. 

Three fundamental statistical approaches were derived and considered for modeling uncertainty: 

4.1 Perturbation Approach 

Using assumed small values of noise and Gaussian-distributed features, estimations on the 
variance and bias were derived 

( )2
2

2

1
ˆVar i j

i j

y y

ij ij

y y d

T T
n

γ

γ

−
⎡ ⎤ ≈⎣ ⎦ ⋅

, and 2ˆ 1
i jij y yb T γ⎡ ⎤ ≈ −⎣ ⎦ ,   (4) 

 

where 2
i jy yγ is coherence between the two measurements and dn is the number of averages. This 

model has a special assumption that 2 2 2
1 2 1 2 1 2v y y v y yγ γ γ= =  

, which may not be accurate for all the 

conditions. However, for good signal-to-noise cases, this relation approximately holds, and this 
model was applied to the data from structural simulation of the previous ABAQUS model with 
Gaussian random noise added to the acceleration responses. Figure 5 shows an example of the 
transmissibility magnitude for structure in Figure 1, and the 1-sigma boundaries are plotted in 
green dots.  
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Figure 5: Transmissibility estimation in noise-excitation test. 

Since the change in transmissibility for this case is difficult to observe visually in Figure 5, the 
average percentage of outliers and distance between outliers and corresponding boundaries (root-
mean-square error) was used to quantitatively represent the transmissibility change. Figure 6 
clearly classifies the two groups of measurements into damaged and undamaged conditions for 
both metrics. When there is no stiffness loss at all, the two groups of data fall perfectly on top of 
each other. 

  
Figure 6: Metrics for detecting change of transmissibility. 

4.2 Gaussian Bivariate Approach 

Considering the transmissibility estimator ij i jT H H= , a Gaussian bivariate model was 

considered, in which transmissibility magnitude is regarded as ratio of two Gaussian random 
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variables. Denoting ˆ ( , )i i iH N µ σ:  and ˆ ( , )j j jH N µ σ: , and random variable ˆ ˆ
i jz H H= , 

the probability density function of z is given by: 

( ) ( )
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( ) ( ) ( )
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where ˆE ixv
i i

xx

G
H

G
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j j
xx

G
H

G
µ ⎡ ⎤= =⎣ ⎦  ; 

    ˆ
i i iHσ ε µ⎡ ⎤= ⋅⎣ ⎦  and ˆ

j j jHσ ε µ⎡ ⎤= ⋅⎣ ⎦ ; 

   
2

2

1ˆ
2

i
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xy
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2

j

j

xy
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d xy

H
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ε

γ
−

⎡ ⎤ ≈⎣ ⎦ ⋅ ⋅
 .   

The statistical model in Equation (5) was validated through a simpler lumped parameter mass-
spring-damper system, whose transfer function and transmissibility are analytically available for 
better validation/comparison. 

 
Figure 7: Three degree-of-freedom system for validation. 

Figure 8 plots the input-output transfer function estimations, when the system in Figure 7 is 
excited at degree-of-freedom (DOF) #3, and outputs at DOF #1 and DOF #2, with the 1-standard 
deviation boundary plotted in red. 
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Figure 8: Single channel transfer function magnitudes with estimation and uncertainty bounds. 

Figure 9 plots the transmissibility estimation and 90%-confidence bounds, which are given by 
Equation (5), and similar to the perturbation approach, the outlier percentage is calculated and 
plotted in Figure 9. 

 
Figure 9: Transmissibility estimation between mass #1 and #2 (left) and outlier percentage 
(right). 

Excellent consistency of outliers (10%) was observed, since the confidence interval of the 
uncertainty boundaries was set at 90%. The reason for the poor accuracy in the frequency range 
lower than 0.5Hz is because of the large skewness for the estimation distribution when the 
magnitude, always positive by definition, is very small.  The probability model does allow for 
negative magnitude changes, and this physical inconsistency, while very small, does corrupt low-
amplitude estimations. 

4.3 Chi-square Bivariate Approach 

This approach models the uncertainty in the most accurate way, where the estimator in Equation 
(6) is adopted and the transmissibility can be regarded as the square root of the ratio between two 
Chi-square random variables: 
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The probability density function of auto-power density and transmissibility are given by 
Equation (7) and (8) respectively: 
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Similar to the Gaussian approach, validation was performed on a continuous beam, whose 
analytical transfer function and transmissibility are also available, as shown in Figure 10. The 
statistical model in Equations (7) and (8) were both validated by various confidence thresholds 
and different noise contamination levels. Figure 11 shows observed histogram of transmissibility 
compared to the predicted probability density function at an arbitrary frequency line, with 
expectation (average), 5%, and 95% feature boundaries in green. 

 
Figure 10: Beam model for statistical model validation. 

Figure 12 shows an example of transmissibility estimation over the frequency domain and the 
predicted 90% confidence boundaries, with 1% of noise contamination. Outlier percentage over 
the entire frequency domain is also plotted in Figure 12, where an exact consistency is obtained 
between the histogram observation and the model prediction. 
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Figure 11: Histrogram of transmissiblity estimation and derived probability density function. 

 
Figure 12: Transmissibility estimation with predicted 90% confidence boundaries, 1% of NSR. 

Thus, three statistical models quantifying uncertainty of transmissibility magnitude estimation 
have been established, and Table 1 compares the pros and cons of each approach. Chi-square 
bivariate approach has the best accuracy and compatibility with output-only data, but is not as 
robust as other approaches for noise-contaminated conditions. 
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Table 1: Comparison between different quantification approaches. 

 Perturbation  Gaussian bivariate  Chi-square bivariate  

estimator  
ˆ ˆ

i i j jy y y yG G  ˆ ˆ
i jH H  ˆ ˆ

i i j jy y y yG G  

assumption  
Optimized channels  
Uncorrelated noise  
Balanced channels  

Uncorrelated noise  No assumptions  

input 
knowledge 
required?  

no  yes  no  

distribution 
form  Gaussian Ratio of correlated 

Gaussian  

Square root of the ratio 
of correlated Chi-

Square  

noise  Works for measurement 
with noise  

Both noise free and noise 
contaminated conditions  

Both noise free and 
noise contaminated 

conditions  

accuracy  Least accurate  Accurate for highly-
coherent measurements  Accurate for all  

limitation  More pre-assumptions, 
hard to satisfy them all  

Lower bound penetrates 
into negative for small 

estimation  
Submerged into noise  

 

5.0  RECEIVER OPERATING CHARACTERISTICS 

Each model may be thus used to determine, with statistical confidence, when damage has 
occurred. For most of the conditions, the damaged and undamaged distributions are not fully 
separated, which means at any threshold, there will be both false positives and false negatives. 
Receiver operating characteristic (ROC) curves visualize the trade-off and help to optimize the 
best threshold with clear indication of the detection rates.  They may also be used to compare the 
models independently to see which has the best classifier performance. 

Consider the model in Figure 7 and the statistical model via Chi-square bivariate approach.  Two 
arbitrary frequency lines are picked at lower and higher frequency regions respectively, as 
examples to evaluate the probability density and the operating characteristics below. The 
example frequency points are picked at 0.81 Hz and 3.27 Hz, with a high and low input-output 
gain, respectively. 
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Figure 13 lists the probability density evaluations for three noise-contaminated conditions and at 
two frequency lines. The left column in Figure 13 is evaluated at 0.87 Hz, where the input-output 
gain factor is large, and the distributions are distinguished very easily, even with 10% noise 
contamination. In the right hand side column, the curves are barely distinguishable when 
extraneous noise exists, as all the distributions for different damage levels overlap on top of each 
other.  This is because the transmissibility estimation uncertainty is evaluated at a frequency with 
low gain factor, and after contamination, the estimation at this frequency is dominated by noise. 
Therefore, with a change of system parameters, there are no detectable changes in the 
estimations. 

  

    

    
Figure 13: Probability density function of transmissibility estimations for different damage levels, 

upper left: 0.87Hz, external noise free; mid left: 0.87Hz, 1% NSR; lower left: 0.87Hz, 10% NSR; 

 upper right: 3.12Hz, external noise free; mid right: 3.12Hz, 1% NSR; lower right: 3.12Hz, 10% 
NSR. 
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Figure 14 shows the ROC curves for all the conditions in Figure 13, and area-under-curve (AUC) 
metrics for the entire frequency range are plotted in Figure 15.  The larger the AUC (which is 
computed as the area under the ROC), the better the approach is at globally performing well, i.e., 
classifying data appropriately. Frequency lines with big gains, especially close to resonances, 
have both good sensitivity and specificity, i.e. high detection rate with very small false positive 
rate (type-I error.) 

 

 
Figure 14: ROC curves for different frequencies and settings with nd=4, upper left: 0.87Hz, 
external noise free; upper mid: 0.87Hz, 1% NSR; upper right: 0.87Hz, 10% NSR; lower left: 
3.12Hz, external noise free; lower mid: 3.12Hz, 1% NSR; lower right: 3.12Hz, 10% NSR. 

   
Figure 15: AUC metric evaluation v.s. frequency, left: external noise free; middle: 1% of NSR 
right: 10% of NSR 
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Figure 16 compare the AUC metric evaluated at the two example frequency lines, with all the 
damage conditions included. These results simply indicate the same conclusion that high input-
output gain will have better robustness for noise contamination, and will have AUC closer to 0.5, 
which is the perfect (ideal) value. 

 

 
Figure 16: Comparison of AUC for different damage levels and noise-to-signal levels. 

 

6.0  PHASE UNCERTAINTY MODEL  

Considering the wide use of phase (not just magnitude, as presented above) in many system 
identification and modal analysis applications, an uncertainty model of transmissibility phase 
estimation is also under development. Different from the estimator in Equation (6) in which only 
magnitude information is contained, another estimator is adopted with respect to cross-power 
spectra, as shown in Equation (9): 
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xvi
ij

j xv

GX VT
X V G

∗

∗

⋅= =
⋅

 ,  where ,  or xvG i j∈ ∀£ .   (9) 

The phase estimation is calculated from the ratio between imaginary and real part of the 
transmissibility estimation: 

              atan 2 ij
ij

ij

T
T

T

⎛ ⎞⎡ ⎤ℑ⎣ ⎦⎜ ⎟⎡ ⎤ =⎣ ⎦ ⎜ ⎟⎡ ⎤ℜ⎣ ⎦⎝ ⎠
R ,     (10) 

in which the ( )atan 2 ⋅ is the four-quadrant arctangent function. The real and imaginary part of the 

transmissibility, i.e. the denominator and numerator in Equation (10), can be approximated 
regarded as uncorrelated Gaussian random variables if the test is implemented via a Gaussian 
process. Therefore, the distribution of phase angle may be obtained from change of variable to 
arctangent value.  
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Equation (11) is the final form of the derived probability density function ( )p θ : 

          ( ) ( )

2

2
2

3/2

esec Erf
2 2

C
BA C C Ap

BB B
θ θ

ππ

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟⋅ ⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠

,    (11) 

where: ( ) ( )
2 2
Re Im
2 2
Re Im

1
2 2

ImRe
2 2 2 2

Re Im Re Im Re Im

tan tane 1;    ;    A B C

µ µ
σ σ θ µ θµ

σ σ σ σ σ σ

⎛ ⎞
− −⎜ ⎟⎜ ⎟⎝ ⎠

= = + = + . In the probability density 

function expressed in Equation (11), the parameters are only determined by the mean values and 
standard deviation of the real and imaginary parts at the corresponding frequency line. One thing 
that must be clarified is that in order to make the probability density function differentiable, 
common arctangent function is used, so the range of θ is from -π to π. Phase unwrapping beyond 
this range is accomplished manually. 

A real plate structure shaker test was implemented and both uncertainty of transmissibility and 
transfer function are tested based on Equation (11). The plate is clamped along one edge, and 
excitation is applied on the blue dot in Figure 17. Four locations of measurements are labeled 
and marked in brown, and the red dot illustrates the damage position, where an extra spring or 
mass was added to change the local stiffness/mass. Broadband Gaussian noise is used as the 
input excitation from shaker. 

 
Figure 17: Plate structure illustration. 
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Figure 18: Magnitude of transfer function H, at each measurement point. 

Figure 18 and 19 show the magnitude and phase estimations of all the four input-output transfer 
functions and Figure 20 shows the transmissibility estimations. From both a magnitude and 
phase point of view, transmissibility is observed to be clearly separated and to be a more 
sensitive detector of changes caused by system parameter changes due to damage. 

 
Figure 19: Phase of transfer function H, at each measurement point. 
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Figure 20: Transmissibility T between 1~2 and 3~4. 

The uncertainty model proposed in Equation (11) was validated by the real measurement data 
obtained from plate structure characterized in Figure 17, and the phase uncertainty of both 
transfer function and transmissibility were tested. 

Figure 21 illustrates the histogram of phase estimation at arbitrary frequency lines, for transfer 
function H and transmissibility T, where the red curve is the predicted distribution calculated 
from Equation (11). The histogram coincides perfectly with the predicted curves. 

 
Figure 21: Histogram of phase estimation for H and T at arbitrary frequency lines. 
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undamaged case are plotted in blue dots, and the damaged case is in green. Red line represents 
the pre-set confidence threshold, which is 10% in Figure 22. 

 
Figure 22: Magnitude of transfer function H, at each measurement point. 

 
Figure 22 shows that the phase estimation for transfer function has larger variation than 
transmissibility phase, and the uncertainty bounds capture this issue. For the outlier percentages 
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the anticipated value, except for transmissibility phase estimations in a small area (250~300Hz) 
where the Gaussian assumption does not hold very well. Green dots in Figure 22 show the outlier 
percentages for the damaged condition, using the same bounds as undamaged case. A lot more 
outliers are observed, especially for transmissibility observations. This illustrates that 
transmissibility has less phase estimate uncertainty and is more sensitive to structural damage. 
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          ( )( )
1
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pct pct q
n =

= −∑ ,      (12) 

          ( )( )2

1
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k
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MSE pct q
=

= −∑ ,      (13) 

where n is the total number of frequency bins and pct(k) is the outlier percentage at kth frequency 
line as shown in Figure 22 

Figure 23 and 24 compare the metrics defined in Equation 12 and 13, both damaged and 
undamaged conditions, and a very clear separation between the two groups of data is observed. 
This study was still ongoing at the termination of funding for this project. 

 

 
Figure 23: Metrics of transfer function phase estimation. 

 

 
Figure 24:  Metrics of transmissibility phase estimation. 
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7.0  CONCLUSIONS 

The model via perturbation approach simply supplies the variance and bias error for one of the 
transmissibility estimators, which requires the least information about input and output. Gaussian 
bivariate approach gives a more accurate quantification through cross power density estimations, 
except in very small frequency range, where the magnitude is really low and does not deliver lots 
of useful information. Chi-square bivariate approach delivers the most accurate statistical model 
and does not require any information from the input, but when extraneous noise level is high, the 
estimator itself is dominated by the noise floor, and does not contain useful transmissibility 
information.  Furthermore, although this approach had overall the best features, it only works for 
transmissibility magnitude estimations.  All comparisons were validated on a three-degree-of-
freedom system model. 

Based upon the statistical models established, a receiver operating characteristic (ROC) analysis 
was applied to evaluate performance, and the conclusion was reached that at frequency lines with 
good input-output gain, the detection is globally stable even when there is noise contamination.  

Phase estimation statistical modeling work commenced for both frequency response function and 
transmissibility. Similar validation has been done with data from a cantilevered plate structure. 
Test results show clearly the sensitivity of transmissibility phase in capturing structural 
parameter changes, although this study was still ongoing at the time of funding loss. 
 
8.0  RECOMMENDATIONS AND FUTURE WORK  

The recommendations from this work are the following: 

1. Use the Chi-square bivariate model when transmissibility magnitude is being estimated. 

2. Use the Gaussian ratio model when transmissibility phase is being estimated. 

Future work is considered to be propagation of the uncertainty from the current spectral 
estimations, transfer function and transmissibility, to the structural health monitoring features, 
such as the root mean square error and dot product difference proposed in the first part of this 
project. Analytical models might not be available because of the mathematical complexity, and 
focus will be made upon Monte Carlo modeling, mixture modeling, and meta-analysis. 

Several publications resulted from this project: 

Z. Mao and M. D. Todd, “A Model for Quantifying Uncertainty in the Estimation of Noise-
Contaminated Measurements of Transmissibility,” Mechanical Systems and Signal Processing, 
in press, 2011. 
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Z. Mao and M. D. Todd, “A Statistical Confidence Model for Noise-Contaminated Structural 
Transmissibility Measurements Used in Damage Detection,” Proc. SPIE Smart Structures/NDE 
7650, San Diego, California, March 8-11, 2010. 

Z. Mao and M. D. Todd, “A Model of Uncertainty Quantification in the Estimation of Noise-
Contaminated Transmissibility Measurements for System Identification”, Proceedings of IMAC 
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